Add like
Add dislike
Add to saved papers

Growth restriction induced by chronic prenatal hypoxia affects breathing rhythm and its pontine catecholaminergic modulation.

Impaired transplacental supply of oxygen leads to intrauterine growth restriction, one of the most important causes of perinatal mortality and respiratory morbidity. Breathing rhythm depends on the central respiratory network modulated by catecholamines. We investigated the impact of growth restriction, using prenatal hypoxia, on respiratory frequency, on central respiratory-like rhythm, and on its catecholaminergic modulation after birth. At birth, respiratory frequency was increased and confirmed in en bloc medullary preparations, where the frequency of the fourth cervical (C4) ventral root discharge was increased, and in slice preparations containing the pre-Bötzinger complex with an increased inspiratory rhythm. The inhibition of C4 burst discharge observed in pontomedullary preparations was stronger in the growth-restricted group. These results cannot be directly linked by the tyrosine hydroxylase activity increase of A1 /C1 and A2 /C2 cell groups in the medulla since blockade of α1 - and α2 -adrenergic receptors did not abolish the difference between both groups. However, in pontomedullary preparations, the stronger inhibition of C4 burst discharge is probably supported by an increased inhibition of A5 , a respiratory rhythm inhibitor pontine group of neurons displaying increased tyrosine hydroxylase activity, because blockade of α2 -adrenergic receptors abolished the difference between the two groups. Taken together, these results indicate that growth restriction leads to a perturbation of the breathing frequency, which finds, at least in part, its origin in the modification of catecholaminergic modulation of the central breathing network.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app