Add like
Add dislike
Add to saved papers

Computationally Efficient Truncated Nuclear Norm Minimization for High Dynamic Range Imaging.

Matrix completion is a rank minimization problem to recover a low-rank data matrix from a small subset of its entries. Since the matrix rank is nonconvex and discrete, many existing approaches approximate the matrix rank as the nuclear norm. However, the truncated nuclear norm is known to be a better approximation to the matrix rank than the nuclear norm, exploiting a priori target rank information about the problem in rank minimization. In this paper, we propose a computationally efficient truncated nuclear norm minimization algorithm for matrix completion, which we call TNNM-ALM. We reformulate the original optimization problem by introducing slack variables and considering noise in the observation. The central contribution of this paper is to solve it efficiently via the augmented Lagrange multiplier (ALM) method, where the optimization variables are updated by closed-form solutions. We apply the proposed TNNM-ALM algorithm to ghost-free high dynamic range imaging by exploiting the low-rank structure of irradiance maps from low dynamic range images. Experimental results on both synthetic and real visual data show that the proposed algorithm achieves significantly lower reconstruction errors and superior robustness against noise than the conventional approaches, while providing substantial improvement in speed, thereby applicable to a wide range of imaging applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app