Controlled Clinical Trial
Journal Article
Add like
Add dislike
Add to saved papers

Long Noncoding RNAs and Their Regulatory Network: Potential Therapeutic Targets for Adult Moyamoya Disease.

World Neurosurgery 2016 September
OBJECTIVE: To investigate long noncoding ribonucleic acid (lncRNA) expression patterns in adult moyamoya disease (MMD) patients and explore their possible roles in the pathophysiology of MMD.

METHODS: A healthy control group (n = 10) and an MMD group (n = 15) were evaluated. RNA was extracted from peripheral blood samples and hybridized to microarray to get lncRNA expression profiles. Then predicted lncRNA target genes were identified, and bioinformatics analysis was performed to investigate their molecular functions.

RESULTS: In the MMD group, 3649 lncRNAs exhibited more than 2-fold expression than their counterparts in the healthy control group; of these, 1494 were upregulated, while 2155 were downregulated. Principal component analysis and Hclust analysis produced completely different clusters between the 2 groups. Gene ontology and KEGG pathway enrichment analysis suggested that the differentially expressed lncRNAs regulate multiple signaling pathways that were related with inflammation and vascular disease, and mitogen-activated protein kinase (MAPK) signaling pathway was the core regulatory pathway.

CONCLUSIONS: Long noncoding RNA expression profiles were quite different between MMD and control groups. Multiple signaling pathways that were closely associated with immune response, vasculogenesis, and smooth muscle contraction were indicated to participate in lncRNAs regulatory mechanism; of these, MAPK signaling pathway, which has been well studied for the treatment of many other cardiovascular diseases, was the core of this regulatory network. Our findings could help further understand the pathophysiology of MMD and provide new potential therapeutic targets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app