Whole-body MR neurography: Prospective feasibility study in polyneuropathy and Charcot-Marie-Tooth disease

Avneesh Chhabra, John A Carrino, Sahar J Farahani, Gaurav K Thawait, Charlotte J Sumner, Vibhor Wadhwa, Vinay Chaudhary, Thomas E Lloyd
Journal of Magnetic Resonance Imaging: JMRI 2016, 44 (6): 1513-1521

PURPOSE: To evaluate the feasibility of whole-body magnetic resonance neurography (WBMRN) in polyneuropathy for technical feasibility, distribution of nerve abnormalities, and differentiation.

MATERIALS AND METHODS: Twenty WBMRN examinations were performed on a 3T scanner over 2 years. Patient demographics including history of hereditary and acquired neuropathy were recorded. The images were evaluated by two independent readers with nerve imaging experience for quality. The nerve signal and size alterations were measured in the brachial plexus, lumbosacral plexus, and femoral and sciatic nerves; diffusion tensor imaging parameters (fractional anisotropy [FA] and apparent diffusion coefficient [ADC]) were determined in plexuses, and tractography was performed. Nonparametric Wilcoxon rank sum test, receiver operating characteristic (ROC) analysis, and intraclass correlation coefficients (ICCs) were obtained.

RESULTS: Excellent image quality was obtained for the majority of lumbosacral (LS) plexus (18/20) and 50% of brachial plexus (10/20) regions. Qualitatively among cases, the nerve hyperintensity and/or thickening involved the brachial plexus (11/11), LS plexus (7/11), and both plexuses (7/11), with most nerve thickenings observed in Charcot-Marie-Tooth disease type 1. The nerve signal intensity alterations were significantly different for both brachial (P < 0.05) and LS (P < 0.05) plexuses in cases versus controls. The femoral and sciatic nerve size alterations were different (P < 0.05), while signal intensity differences were not significant (P = 0.1-0.97). Transverse dimensions of C8 (4 mm), L5 (6.2 mm) and S1 (5.1 mm) nerve roots, and sciatic nerves (10.2 mm) were the most accurate diagnostic performance measures in distinguishing cases from controls.

CONCLUSION: WBMRN is feasible for use in the clinical practice for the identification and potential characterization of polyneuropathy. J. Magn. Reson. Imaging 2016;44:1513-1521.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"