Add like
Add dislike
Add to saved papers

Polysorbates 20 and 80 Degradation by Group XV Lysosomal Phospholipase A2 Isomer X1 in Monoclonal Antibody Formulations.

Decreases in polysorbate (PS80) content were observed while evaluating the long-term storage stability of Chinese hamster ovary-derived, purified monoclonal antibodies. It was determined that polysorbate had been enzymatically degraded; therefore, studies were performed to identify and characterize the protein(s) responsible. Polysorbate degrading activity was enriched from Chinese hamster ovary media leading to the identification of group XV lysosomal phospholipase A2 isomer X1 (LPLA2) by shotgun proteomics. Recombinant LPLA2 was over expressed, purified, and functional integrity confirmed against a diheptanoyl phosphatidylcholine substrate. Incubation of recombinantly produced LPLA2 with PS20 and PS80 resulted in hydrolysis of PS20 and PS80 monoester but a much slower rate was observed for higher-order PS80. Endogenous LPLA2 was detected and quantitated at less than 1 ppm in 3 formulated antibodies while LPLA2 was not detected (or less than 0.1 ppm) in a fourth formulated antibody. Furthermore, antibodies with detectable quantities of endogenous LPLA2 demonstrated polysorbate hydrolysis while in contrast the antibody without detectable LPLA2 did not show polysorbate hydrolysis. Comparison of polysorbate degradation products generated from the formulated antibody and samples of polysorbate incubated with recombinant LPLA2 resulted in similar elution profiles by liquid chromatography-mass spectrometry. These results suggest that LPLA2 may play a key role in polysorbate degradation in some antibody preparations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app