Add like
Add dislike
Add to saved papers

Detection of Shockable Ventricular Arrhythmia using Variational Mode Decomposition.

Ventricular tachycardia (VT) and ventricular fibrillation (VF) are shockable ventricular cardiac ailments. Detection of VT/VF is one of the important step in both automated external defibrillator (AED) and implantable cardioverter defibrillator (ICD) therapy. In this paper, we propose a new method for detection and classification of shockable ventricular arrhythmia (VT/VF) and non-shockable ventricular arrhythmia (normal sinus rhythm, ventricular bigeminy, ventricular ectopic beats, and ventricular escape rhythm) episodes from Electrocardiogram (ECG) signal. The variational mode decomposition (VMD) is used to decompose the ECG signal into number of modes or sub-signals. The energy, the renyi entropy and the permutation entropy of first three modes are evaluated and these values are used as diagnostic features. The mutual information based feature scoring is employed to select optimal set of diagnostic features. The performance of the diagnostic features is evaluated using random forest (RF) classifier. Experimental results reveal that, the feature subset derived from mutual information based scoring and the RF classifier produces accuracy, sensitivity and specificity values of 97.23 %, 96.54 %, and 97.97 %, respectively. The proposed method is compared with some of the existing techniques for detection of shockable ventricular arrhythmia episodes from ECG.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app