Add like
Add dislike
Add to saved papers

Killing effect of nanoencapsulated colistin sulfate on Pseudomonas aeruginosa from cystic fibrosis patients.

Pseudomonas aeruginosa frequently infects the respiratory tract of cystic fibrosis (CF) patients. Multidrug-resistant phenotypes and high capacity to form stable biofilms are common. Recent studies have described the emergence of colistin-resistant isolates in CF patients treated with long-term inhaled colistin. The use of nanoparticles containing antimicrobials can contribute to overcome drug resistance mechanisms. The aim of this study was to explore antimicrobial activity of nanoencapsulated colistin (SLN-NLC) versus free colistin against P. aeruginosa clinical isolates from CF patients and to investigate their efficacy in biofilm eradication. Susceptibility of planktonic bacteria to antimicrobials was examined by using the broth microdilution method and growth curve assay. Minimal biofilm eradication concentration (MBEC) and biofilm prevention concentration (BPC) were determined to assess antimicrobial susceptibility of sessile bacteria. We used atomic force microscopy (AFM) to visualize treated and untreated biofilms and to determine surface roughness and other relevant parameters. Colistin nanoparticles had the same antimicrobial activity as free drug against planktonic bacteria. However, nanoencapsulated colistin was much more efficient in the eradication of biofilms than free colistin. Thus, these formulations have to be considered as a good alternative therapeutic option to treat P. aeruginosa infections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app