Add like
Add dislike
Add to saved papers

Nonorthogonality Problem and Effective Electronic Coupling Calculation: Application to Charge Transfer in π-Stacks Relevant to Biochemistry and Molecular Electronics.

A recently proposed method for the calculation of the effective electronic coupling (or charge-transfer integral) in a two-state system is discussed and related to other methods in the literature. The theoretical expression of the coupling is exact within the two-state model and applies to the general case where the charge transfer (CT) process involves nonorthogonal initial and final diabatic (localized) states. In this work, it is shown how this effective electronic coupling is also the one to be used in a suitable extension of Rabi's formula to the nonorthogonal representation of two-state dynamical problems. The formula for the transfer integral is inspected in the regime of long-range CT and applied to CT reactions in redox molecular systems of interest to biochemistry and/or to molecular electronics: the guanine-thymine stack from regular B-DNA, the polyaromatic perylenediimide stack, and the quinol-semiquinone couple. The calculations are performed within the framework of the Density Functional Theory (DFT), using hybrid exchange-correlation (XC) density functionals, which also allowed investigation of the appropriateness of such hybrid-DFT methods for computing electronic couplings. The use of the recently developed M06-2X and M06-HF density functionals in appropriate ways is supported by the results of this work.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app