Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Double robust and efficient estimation of a prognostic model for events in the presence of dependent censoring.

Biostatistics 2016 January
In longitudinal data arising from observational or experimental studies, dependent subject drop-out is a common occurrence. If the goal is estimation of the parameters of a marginal complete-data model for the outcome, biased inference will result from fitting the model of interest with only uncensored subjects. For example, investigators are interested in estimating a prognostic model for clinical events in HIV-positive patients, under the counterfactual scenario in which everyone remained on ART (when in reality, only a subset had). Inverse probability of censoring weighting (IPCW) is a popular method that relies on correct estimation of the probability of censoring to produce consistent estimation, but is an inefficient estimator in its standard form. We introduce sequentially augmented regression (SAR), an adaptation of the Bang and Robins (2005. Doubly robust estimation in missing data and causal inference models. Biometrics 61, 962-972.) method to estimate a complete-data prediction model, adjusting for longitudinal missing at random censoring. In addition, we propose a closely related non-parametric approach using targeted maximum likelihood estimation (TMLE; van der Laan and Rubin, 2006. Targeted maximum likelihood learning. The International Journal of Biostatistics 2 (1), Article 11). We compare IPCW, SAR, and TMLE (implemented parametrically and with Super Learner) through simulation and the above-mentioned case study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app