Add like
Add dislike
Add to saved papers

Interfacial Growth of Metal Organic Framework/Graphite Oxide Composites through Pickering Emulsion and Their CO₂ Capture Performance in the Presence of Humidity.

We proposed an in situ interfacial growth method induced by the Pickering emulsion strategy to produce metal organic framework (MOF)/graphite oxide (GO) composites of Cu3(BTC)2/GO, in which GO was demonstrated to be a promising stabilizer for producing the Pickering emulsion and provided a large interfacial area for the in situ growth of Cu3(BTC)2 nanoparticles. When Cu3(BTC)2/GO composites were used as adsorbents for CO2 capture from the simulated humid flue gas, they showed both significantly improved thermodynamic and dynamic properties. Because most of the H2O molecules were adsorbed on the highly exfoliated GO sheets in Cu3(BTC)2/GO-m, CO2 uptake reached 3.30 mmol/g after exposure to the simulated flue gas for 60 min and remained unchanged for up to 120 min. This highlighted its potential application for real CO2 capture. More importantly, the in situ interfacial growth of nanoparticles induced by Pickering emulsions would be a promising strategy for designing and fabricating nanocomposites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app