Journal Article
Research Support, N.I.H., Extramural
Review
Add like
Add dislike
Add to saved papers

The intersection between viral oncolysis, drug resistance, and autophagy.

Biological Chemistry 2015 December
Resistance to both cytotoxic and targeted therapies is a major problem facing cancer treatment. The mechanisms of resistance to unrelated drugs share many common features, including up-regulation of detoxifying pathways, activation of pro-survival mechanisms, and ineffective induction of cell death. Oncolytic viruses (OVs) are promising biotherapeutics for cancer treatment that specifically replicate in and lyse cancer cells. In addition to direct viral lysis, the anti-tumor effects of OVs are mediated via innate and adaptive immune responses, and several adaptation mechanisms such as autophagy appear to contribute to their anti-tumor properties. Autophagy is a versatile pathway that plays a key role in cancer survival during stressful conditions such as starvation or cytotoxic drug challenges. Autophagy also plays a role in mediating innate and adaptive immune responses by contributing to antigen presentation and cytokine secretion. This role of autophagy in regulation of immune responses can be utilized to design therapeutic combinations using approaches that either stimulate or block autophagy to potentiate therapeutic efficacy of OVs. Additional studies are needed to determine optimal multimodal combination approaches that will facilitate future successful clinical implementation of OV-based therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app