Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Repair versus Checkpoint Functions of BRCA1 Are Differentially Regulated by Site of Chromatin Binding.

Cancer Research 2015 July 2
The product of the Brca1 tumor-suppressor gene is involved in multiple aspects of the cellular DNA damage response (DDR), including activation of cell-cycle arrests and DNA double-stranded break (DSB) repair by homologous recombination. Prior reports demonstrated that BRCA1 recruitment to areas of DNA breakage depended on RAP80 and the RNF8/RNF168 E3 ubiquitin ligases. Here, we extend these findings by showing that RAP80 is only required for the binding of BRCA1 to regions flanking the DSB, whereas BRCA1 binding directly to DNA breaks requires Nijmegen breakage syndrome 1 (NBS1). These differential recruitment mechanisms differentially affect BRCA1 functions: (i) RAP80-dependent recruitment of BRCA1 to chromatin flanking DNA breaks is required for BRCA1 phosphorylation at serine 1387 and 1423 by ATM and, consequently, for the activation of S and G(2) checkpoints; and (ii) BRCA1 interaction with NBS1 upon DSB induction results in an NBS1-dependent recruitment of BRCA1 directly to the DNA break and is required for nonhomologous end-joining repair. Together, these findings illustrate that spatially distinct fractions of BRCA1 exist at the DSB site, which are recruited by different mechanisms and execute different functions in the DDR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app