JOURNAL ARTICLE

Fast and reversible direct CO2 capture from air onto all-polymer nanofibrillated cellulose-polyethylenimine foams

Houssine Sehaqui, María Elena Gálvez, Viola Becatinni, Yi cheng Ng, Aldo Steinfeld, Tanja Zimmermann, Philippe Tingaut
Environmental Science & Technology 2015 March 3, 49 (5): 3167-74
25629220
Fully polymeric and biobased CO2 sorbents composed of oxidized nanofibrillated cellulose (NFC) and a high molar mass polyethylenimine (PEI) have been prepared via a freeze-drying process. This resulted in NFC/PEI foams displaying a sheet structure with porosity above 97% and specific surface area in the range 2.7-8.3 m(2)·g(-1). Systematic studies on the impact of both PEI content and relative humidity on the CO2 capture capacity of the amine functionalized sorbents have been conducted under atmospheric conditions (moist air with ∼400 ppm of CO2). At 80% RH and an optimum PEI content of 44 wt %, a CO2 capacity of 2.22 mmol·g(-1), a stability over five cycles, and an exceptionally low adsorption half time of 10.6 min were achieved. In the 20-80% RH range studied, the increase in relative humidity increased CO2 capacity of NFC/PEI foams at the expense of a high H2O uptake in the range 3.8-28 mmol·g(-1).

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
25629220
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"