Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Differential expression of sulfur assimilation pathway genes in Acidithiobacillus ferrooxidans under Cd²⁺ stress: evidence from transcriptional, enzymatic, and metabolic profiles.

Acidithiobacillus ferrooxidans is a heavy metal-tolerant acidophilic chemolithotroph found in acidic mine effluent and is used commercially in the bioleaching of sulfide ores. In this work, we investigated the interplay between divalent cadmium (Cd(2+)) resistance and expression of genes involved in the sulfur assimilation pathway (SAP). We also investigated the response of the thiol-containing metal-chelating metabolites, cysteine and glutathione(GSH), to increasing Cd(2+) concentrations. During growth in the presence of 30 mM Cd(2+), the concentrations of mRNA for 5 genes in the SAP pathway increased more than fourfold: these encode ATP sulfurylase (ATPS), adenosine 5'-phosphosulfate (APS) reductase, sulfite reductase (SiR), serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL). Increased transcription was also reflected in increased enzyme activities: those of SAT and adenosylphosphosulfate reductase (APR) reached a peak of 26- and 15.8-fold, respectively, compared to the control culture in the presence of 15 mM Cd(2+). In contrast, the activity of OAS-TL, which is responsible for the biosynthesis of cysteine, was diminished. At the metabolite level, the intracellular cysteine and GSH contents nearly doubled. These results suggested that Cd(2+) induced transcription of SAP genes, while directly inhibiting the activities of some enzymes (e.g., OAS-TL). Overall, these results are consistent with a detoxification/resistance mechanism involving enhanced sulfur uptake and sequestration of Cd(2+) by cysteine and glutathione.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app