Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Insights into the effects of 2:1 "sandwich-type" crown-ether/metal-ion complexes in responsive host-guest systems.

In-depth investigations of the specific ion-responsive characteristics based on 2:1 "sandwich" structures and effects of crown ether cavity sizes on the metal-ion/crown-ether complexation are systematically performed with a series of PNIPAM-based responsive copolymers containing similar contents of crown ether units with different cavity dimensions (12-crown-4 (12C4), 15-crown-5 (15C5), 18-crown-6 (18C6)). The lower critical solution temperature (LCST) values of copolymers in deionized water shift to lower temperatures gradually when the crown ether contents increase or the ring sizes decrease from 18C6 to 12C4. With increasing the concentrations of alkali metal ions (Na(+), K(+), Cs(+)) or the contents of pendent crown ether groups, the copolymers with different crown ether cavity sizes exhibit higher selectivity and sensitivity to corresponding cations. Importantly, the ion sensitivities of the copolymers in response to corresponding alkali metal ions increase dramatically with an increase in the crown ether cavity size. Interestingly, a linear relationship between the crown ether cavity size and the diameter of corresponding cation for the formation of stable 2:1 "sandwich" complexes is found for the first time, from which the size of metal ions or other guests that able to form 2:1 "sandwich" complexes with crown ethers can be deduced. The results in this work are valuable and useful for further developments and practical applications of various crown-ether-based smart materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app