Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Effect of nanoporous carbon surface chemistry on the removal of endocrine disruptors from water phase.

Wood-based activated carbon and its sulfur-doped counterpart were used as adsorbents of endocrine disruptor chemicals (EDC) from aqueous solution. Adsorption process was carried out in dynamic conditions and Thomas model was used to predict the performance of the column. The results showed a good fitting of the theoretical curve to the experimental data. S-doped carbon exhibited a higher adsorption capacity of trimethoprim (TMP) and smaller of sulfamethoxazole (SMX) and diclofenac (DCF) in comparison with the carbon with no sulfur incorporated into the matrix. The surface features of the initial carbons and those exposed to EDC were evaluated in order to derive the adsorption mechanism and elucidate the role of surface features. An increase in the amount of TMP from a low concentration solution (10 mg/L) on sulfur-doped carbon was linked to acid-base interactions and the reactive adsorption/oxidation of TMP. A decrease in SMX and DCF after sulfur doping was explained by a considerable increase in surface hydrophobicity, which does not favor the retention of polar DCF and SMX molecules. When the adsorption was measured from a high concentration solution at equilibrium conditions at the dark or under solar light irradiation different trends in the adsorption capacities were found. This was linked to the photoactivity of carbons and the degradation of EDC in the pore system promoted by visible light followed by the adsorption of the products of surface reactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app