Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Preclinical characterization of RSM-932A, a novel anticancer drug targeting the human choline kinase alpha, an enzyme involved in increased lipid metabolism of cancer cells.

Choline kinase α (CHKA; here designated as ChoKα) is the first enzyme in the CDP-choline pathway, implicated in phospholipids metabolism. It is overexpressed in several human tumors such as breast, lung, bladder, colorectal, prostate, ovary, and liver. The overexpression of ChoKα has oncogenic potential and synergizes with other known oncogenes. It has been proposed as a novel cancer drug target with a distinct mechanism of action. We have generated a set of ChoKα inhibitors with potent in vitro antiproliferative and in vivo antitumoral activity against human xenografts in mice, showing high efficacy with low toxicity profiles. Among these inhibitors, RSM-932A has been chosen for further clinical development due to its potent antiproliferative activity in vitro against a large variety of tumor-derived cell lines, a potent in vivo anticancer activity, and lack of toxicity at the effective doses. Here, we provide the preclinical evidence to support the use of RSM-932A as a good candidate to be tested in clinical trials as the "first in humans" drug targeting ChoKα.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app