Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Latching chains in K-nearest-neighbor and modular small-world networks.

Latching dynamics retrieve pattern sequences successively by neural adaption and pattern correlation. We have previously proposed a modular latching chain model in Song et al. (2014) to better accommodate the structured transitions in the brain. Different cortical areas have different network structures. To explore how structural parameters like rewiring probability, threshold, noise and feedback connections affect the latching dynamics, two different connection schemes, K-nearest-neighbor network and modular network both having modular structure are considered. Latching chains are measured using two proposed measures characterizing length of intra-modular latching chains and sequential inter-modular association transitions. Our main findings include: (1) With decreasing threshold coefficient and rewiring probability, both the K-nearest-neighbor network and the modular network experience quantitatively similar phase change processes. (2) The modular network exhibits selectively enhanced latching in the small-world range of connectivity. (3) The K-nearest-neighbor network is more robust to changes in rewiring probability, while the modular network is more robust to the presence of noise pattern pairs and to changes in the strength of feedback connections. According to our findings, the relationships between latching chains in K-nearest-neighbor and modular networks and different forms of cognition and information processing emerging in the brain are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app