Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Livin contributes to tumor hypoxia-induced resistance to cytotoxic therapies in glioblastoma multiforme.

Clinical Cancer Research 2015 January 16
PURPOSE: Tumor hypoxia is one of the crucial microenvironments to promote therapy resistance (TR) in glioblastoma multiforme (GBM). Livin, a member of the family of inhibitor of apoptosis proteins, contributes antiapoptosis. However, the role of tumor hypoxia in Livin regulation and its impact on TR are unclear.

EXPERIMENTAL DESIGN: Livin expression and apoptosis for tumor hypoxic cells derived from human glioblastoma xenografts or in vitro hypoxic stress-treated glioblastoma cells were determined by Western blotting, immunofluorescence imaging, and annexin V staining assay. The mechanism of hypoxia-induced Livin induction was investigated by chromatin immunoprecipitation assay and reporter assay. Genetic and pharmacologic manipulation of Livin was utilized to investigate the role of Livin on tumor hypoxia-induced TR in vitro or in vivo.

RESULTS: The upregulation of Livin expression and downregulation of caspase activity were observed under cycling and chronic hypoxia in glioblastoma cells and xenografts, concomitant with increased TR to ionizing radiation and temozolomide. However, knockdown of Livin inhibited these effects. Moreover, hypoxia activated Livin transcription through the binding of hypoxia-inducible factor-1α to the Livin promoter. The targeted inhibition of Livin by the cell-permeable peptide (TAT-Lp15) in intracerebral glioblastoma-bearing mice demonstrated a synergistic suppression of tumor growth and increased the survival rate in standard-of-care treatment with radiation plus temozolomide.

CONCLUSIONS: These findings indicate a novel pathway that links upregulation of Livin to tumor hypoxia-induced TR in GBM and suggest that targeting Livin using cell-permeable peptide may be an effective therapeutic strategy for tumor microenvironment-induced TR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app