Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Iterative support detection-based split Bregman method for wavelet frame-based image inpainting.

The wavelet frame systems have been extensively studied due to their capability of sparsely approximating piece-wise smooth functions, such as images, and the corresponding wavelet frame-based image restoration models are mostly based on the penalization of the l1 norm of wavelet frame coefficients for sparsity enforcement. In this paper, we focus on the image inpainting problem based on the wavelet frame, propose a weighted sparse restoration model, and develop a corresponding efficient algorithm. The new algorithm combines the idea of iterative support detection method, first proposed by Wang and Yin for sparse signal reconstruction, and the split Bregman method for wavelet frame l1 model of image inpainting, and more important, naturally makes use of the specific multilevel structure of the wavelet frame coefficients to enhance the recovery quality. This new algorithm can be considered as the incorporation of prior structural information of the wavelet frame coefficients into the traditional l1 model. Our numerical experiments show that the proposed method is superior to the original split Bregman method for wavelet frame-based l1 norm image inpainting model as well as some typical l(p) (0 ≤ p < 1) norm-based nonconvex algorithms such as mean doubly augmented Lagrangian method, in terms of better preservation of sharp edges, due to their failing to make use of the structure of the wavelet frame coefficients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app