Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Silver dopants for targeted and untargeted direct analysis of unsaturated lipids via infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI).

RATIONALE: Unsaturated lipids play a crucial role in cellular processes as signaling factors, membrane building blocks or energy storage molecules. However, adequate mass spectrometry imaging of this diverse group of molecules remains challenging. In this study we implemented silver cationization for direct analysis by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) to enhance the ion abundances for olefinic lipids and facilitate peak assignment.

METHODS: Trace amounts of silver nitrate were doped into the electrospray solvent of an IR-MALDESI imaging source coupled to an Orbitrap mass analyzer. Calcifediol was examined as a model compound to demonstrate the effect of silver dopants on sensitivity and assay robustness. Dried human serum spots were subsequently analyzed to compare Ag-doped solvents with previously described solvent compositions. Mass differences as well as ion abundance ratio filters were employed to interpret results based on the characteristic isotopic pattern of silver.

RESULTS: Olefinic lipids were readily observed as silver adducts in IR-MALDESI analyses. Silver cationization decreased the limit of detection for calcifediol by at least one order of magnitude and was not affected in complex biological matrices. The ion abundance ratio and mass difference of [M + (107) Ag(+)](+) and [M + (109) Ag(+)](+) were successfully applied to facilitate the spectral assignment of silver adducts. Overall, silver cationization increased the analyte coverage in human serum by 43% compared with a standard IR-MALDESI approach.

CONCLUSIONS: Silver cationization has been shown to enhance IR-MALDESI sensitivity and selectivity for unsaturated lipids, even when applied to complex samples. Increased compound coverage, enhanced robustness as well as the developed tools for peak assignment and mapping of isotopic patterns will clearly benefit future mass spectrometry imaging studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app