Add like
Add dislike
Add to saved papers

Scatter reduction for high resolution image detectors with a region of interest attenuator.

Compton scatter is the main interaction of x-rays with objects undergoing radiographic and fluoroscopic imaging procedures. Such scatter is responsible for reducing image signal to noise ratio which can negatively impact object detection especially for low contrast objects. To reduce scatter, possible methods are smaller fields-of-view, larger air gaps and the use of an anti-scatter grid. Smaller fields of view may not be acceptable and scanned-beam radiography is not practical for real-time imaging. Air gaps can increase geometric unsharpness and thus degrade image resolution. Deployment of an anti-scatter grid is not well suited for high resolution imagers due to the unavailability of high line density grids needed to prevent grid-line artifacts. However, region of interest (ROI) imaging can be used not only for dose reduction but also for scatter reduction in the ROI. The ROI region receives unattenuated x-rays while the peripheral region receives x-rays reduced in intensity by an ROI attenuator. The scatter within the ROI part of the image originates from both the unattenuated ROI and the attenuated peripheral region. The scatter contribution from the periphery is reduced in intensity because of the reduced primary x-rays in that region and the scatter fraction in the ROI is thus reduced. In this study, the scatter fraction for various kVp's, air-gaps and field sizes was measured for a uniform head equivalent phantom. The scatter fraction in the ROI was calculated using a derived scatter fraction formula, which was validated with experimental measurements. It is shown that use of a ROI attenuator can be an effective way to reduce both scatter and patient dose while maintaining the superior image quality of high resolution detectors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app