Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Acrylate-tethering drug carrier: covalently linking carrier to biological surface and application in the treatment of Helicobacter pylori infection.

Biomacromolecules 2014 November 11
The development of carriers to sustain drugs at stomach surface is an attractive strategy to increase drug bioavailability locally and systematically. So far, the only reported carrier that can form a covalent bond with mucus, the thiolated carrier, relies on a reversible disulfide exchange reaction between thiols on the carrier and disulfide bridges on the mucus. Here we show the design and fabrication of a cellulose carrier with tethering acrylate groups (denoted here as clickable carrier) that, under a nontoxic condition, can efficiently react with thiols on biomaterials in situ through the thermodynamically driven and kinetically probable Michael thiol-ene click reaction. Here we show the attachments of the clickable carriers to a mucin protein, a surface of human laryngeal carcinoma cells, and a surface of a fresh porcine stomach. We also show that the required thiol moieties can be generated in situ by reducing existing cystine disulfide bridges with either the edible vitamin C or the relatively nontoxic tris(2-carboxyethyl) phosphine. Comparing to a control carrier, the clickable carrier can increase some drug concentrations in an ex vivo stomach tissue, and improve the Helicobacter pylori treatment in infected C57BL/6 mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app