Add like
Add dislike
Add to saved papers

In vivo evaluation of rabbit sciatic nerve regeneration with diffusion tensor imaging (DTI): correlations with histology and behavior.

Diffusion tensor imaging (DTI) is widely used in the study of the central nervous system. DTI represents a potential diagnostic tool for the peripheral nerve. However, more detailed information is needed for application of DTI in the clinical setting. In this study, peripheral degeneration and regeneration were evaluated using DTI-based analyses in a rabbit model. The changes in DTI parameters were compared to histological and functional changes after nerve injury. We used a high magnetic field (7.04T) MRI system. Japanese white male rabbits were used as the model of sciatic nerve crush injury. MR images were obtained before injury and at 2, 4, 6 and 8 weeks post-injury. The DTI parameters of fractional anisotropy (FA), axial diffusivity (λ||), and radial diffusivity (λ⊥) were calculated. Our results showed decreased FA and increased λ⊥ during the degenerative phase after sciatic nerve injury. In contrast, increased FA and decreased λ⊥ were observed during the regenerative phase. FA changes were correlated with axon number and with motor function recovery, assessed with the toe-spreading index. This study clearly demonstrates the validity of applying DTI parameters to the in vivo evaluation of peripheral nerve regeneration. Furthermore, results suggest that DTI can be a potent tool for predicting the extent of functional recovery after peripheral nerve injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app