Add like
Add dislike
Add to saved papers

Cursor control by Kalman filter with a non-invasive body-machine interface.

OBJECTIVE: We describe a novel human-machine interface for the control of a two-dimensional (2D) computer cursor using four inertial measurement units (IMUs) placed on the user's upper-body.

APPROACH: A calibration paradigm where human subjects follow a cursor with their body as if they were controlling it with their shoulders generates a map between shoulder motions and cursor kinematics. This map is used in a Kalman filter to estimate the desired cursor coordinates from upper-body motions. We compared cursor control performance in a centre-out reaching task performed by subjects using different amounts of information from the IMUs to control the 2D cursor.

MAIN RESULTS: Our results indicate that taking advantage of the redundancy of the signals from the IMUs improved overall performance. Our work also demonstrates the potential of non-invasive IMU-based body-machine interface systems as an alternative or complement to brain-machine interfaces for accomplishing cursor control in 2D space.

SIGNIFICANCE: The present study may serve as a platform for people with high-tetraplegia to control assistive devices such as powered wheelchairs using a joystick.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app