Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Paraoxonase 1 activity in patients with chronic obstructive pulmonary disease.

COPD 2014 September
INTRODUCTION: Paraoxonase 1 (PON1) is an antioxidative enzyme manly associated with high density lipoproteins (HDL) in the peripheral blood. The aim of this study was to determine the PON1 paraoxonase and arylesterase activities in patients with chronic obstructive pulmonary disease (COPD). We also aimed to determine the concentration of reduced thiol groups as a marker of protein oxidation.

MATERIALS AND METHODS: The study included 105 patients with stable COPD and 44 healthy controls. PON1 activities and thiols concentration were assayed in sera by spectrophotometry.

RESULTS: PON1 basal (POX) and salt-stimulated paraoxonase activity (POX1) as well as arylesterase activity (ARE) were significantly reduced in COPD patients. In addition, concentration of reduced thiol groups was significantly decreased in COPD group. PON1 activities were similar in patients with different disease severity (GOLD stages). However, a significant reduction in POX, POX1 and ARE was observed already in GOLD II stage when compared to controls. POX and POX1 showed modest while ARE yielded very good power for discrimination between healthy subjects and COPD patients. Univariate and multivariate logistic regression analysis indicated that ARE is a good COPD predictor.

CONCLUSION: Reduction of PON1 activity observed in COPD patients could be partly caused by oxidative environment. Lower concentrations of reduced thiol groups in COPD patients suggest that a decrease in PON1 activity could reflect oxidative changes of enzyme free cysteine residues. Furthermore, decreased PON1 arylesterase activity might indicate a down-regulation of PON1 concentration. Our results suggest that ARE could be considered as potential biomarker for COPD diagnosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app