Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Depth-related changes of sediment ammonia-oxidizing microorganisms in a high-altitude freshwater wetland.

Both ammonia-oxidizing bacteria (AOB) and archaea (AOA) might be the key microorganisms in ammonia conversion in ecosystems. However, the depth-related change of AOA and AOB in sediment ecosystem is still not clear. The relative contribution of AOA and AOB to nitrification in wetland sediment remains also unclear. Moreover, information about ammonia-oxidizing microorganisms in high-altitude freshwater wetland is still lacking. The present study investigated the relative abundances and community structures of AOA and AOB in sediments of a high-altitude freshwater wetland in Yunnan Province (China). Variations of the relative abundances and community structures of AOA and AOB were found in the wetland sediments, dependent on both sampling site and sediment depth. The relative abundances of AOA and AOB (0.04-3.84 and 0.01-0.52 %) and the AOA/AOB ratio (0.12-4.65) showed different depth-related change patterns. AOB community size was usually larger than AOA community size. AOB diversity was usually higher than AOA diversity. AOA diversity decreased with the increase of sediment depth, while AOB diversity showed no obvious link with the sediment depth. Pearson's correlation analysis showed that AOA diversity had a positive significant correlation with available phosphorus. Nitrosospira-like sequences, with different compositions, predominated in the wetland sediment AOB communities. This work could provide some new insights toward nitrification in freshwater sediment ecosystems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app