Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fabricating a cycloolefin polymer immunoassay platform with a dual-function polymer brush via a surface-initiated photoiniferter-mediated polymerization strategy.

The development of technologies for a biomedical detection platform is critical to meet the global challenges of various disease diagnoses. In this study, an inert cycloolefin polymer (COP) support was modified with two-layer polymer brushes possessing dual functions, i.e., a low fouling poly[poly(ethylene glycol) methacrylate] [p(PEGMA)] bottom layer and a poly(acrylic acid) (PAA) upper layer for antibody loading, via a surface-initiated photoiniferter-mediated polymerization strategy for fluorescence-based immunoassay. It was demonstrated through a confocal laser scanner that, for the as-prepared COP-g-PEG-b-PAA-IgG supports, nonspecific protein adsorption was suppressed, and the resistance to nonspecific protein interference on antigen recognition was significantly improved, relative to the COP-g-PAA-IgG references. This strategy for surface modification of a polymeric platform is also applicable to the fabrication of other biosensors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app