Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

High surface area Ag-TiO2 nanotubes for solar/visible-light photocatalytic degradation of ceftiofur sodium.

Titanium dioxide nanotubes (TiO2 NTs) with very high surface area (469 m(2)/g) have been synthesized through a simple hydrothermal method and their surface has been modified using silver nanoparticles (Ag NPs). The Ag NPs deposited TiO2 NTs (Ag-TiO2 NTs) show an extended optical response from UV to visible region coupled with a surface plasmon resonance band and thus can be utilized as a plasmonic photocatalyst. The photoluminescence intensity of TiO2 NTs is lower than that of TiO2 nanoparticles due to the delocalization of photogenerated electrons along the one dimensional nanotubes which reduces the rate of charge recombination. The Langmuir adsorption constant of Ag-TiO2 NTs (for ceftiofur sodium adsorption) is twice that of P25 TiO2. The Ag-TiO2 NTs exhibit excellent photocatalytic activity toward the degradation of ceftiofur sodium (CFS) due to high surface area and mesoporosity of TiO2 NTs. The addition of peroxomonosulfate in the photocatalytic system greatly amplifies the CFS degradation owing to the simultaneous generation of both OH and SO4(-). The catalyst retains its photocatalytic activity at least up to four consecutive cycles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app