Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Synthesis of nano zerovalent iron nanoparticles--graphene composite for the treatment of lead contaminated water.

A Nano zerovalent iron nanoparticles graphene composite (G-nZVI) was prepared via a sodium borohydride reduction of graphene oxide and iron chloride under an argon atmosphere. Powder X-ray diffraction patterns showed the formation of the magnetic graphene/nanoscale-zerovalent-iron (G-nZVI) composites and bare nanoscale-zerovalent-iron (nZVI) particles. TEM analysis shows the formation of ~10 nm particles. Adsorption experiments show a maximum Pb(II) adsorption capacity for the G-nZVI composite with 6 wt% graphene oxide loading. Additionally the effects of pH, temperature, contact time, ionic strength and initial metal ion concentration on Pb(II) ion removal were studied. X-ray photoelectron spectroscopy analysis after adsorption results confirmed the composite's ability to adsorb and immobilize lead more efficiently in its zerovalent and bivalent forms, as compared to bare iron nanoparticles. The adsorption of Pb(II) ions fit a pseudo-second-order kinetic model, and adsorption isotherms can be described using the Freundlich equations. G-nZVI shows great potential as an efficient adsorbent for lead immobilization from water, as it exhibits stability, reducing power, a large surface area, and magnetic separation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app