English Abstract
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

[Volume changes of cortical and subcortical reward circuitry in the brain of patients with type 2 diabetes mellitus].

OBJECTIVE: To elucidate the volume changes of cortical and subcortical reward circuitry in patients with type 2 diabetes mellitus.

METHODS: High-resolution three-dimensional T1-weighted fast spoiled gradient recalled echo MRI images were obtained from 16 patients with type 2 diabetes mellitus and 16 normal controls, and 11 type 2 diabetic patients also received the same MRI scans after insulin therapy for 1 year. Volumetric analysis was performed and analysis of covariance and paired t test were applied.

RESULTS: A decreased volume was found in the left insular lobe, left nucleus accumbens area, right hippocampus, putamen and amygdala in type 2 diabetic patients compared with normal controls (P<0.05). After insulin therapy for 1 year, an increased volume of bilateral cortical reward structures was observed (left, 33.65∓3.66 ml; right, 33.35∓4.25 ml) compared the baseline level (left, 31.45∓2.90 ml; right, 31.12∓2.97 ml) in diabetic patients (P<0.05). No significant volume change in the bilateral basal ganglia structures was found after insulin therapy for 1 year (P>0.05), and bilateral ventral diencephalon area showed an increased volume after the treatment (left, 3.26∓0.68 ml; right, 3.20∓0.78 ml) compared with the baseline (left, 2.96∓0.76 ml; right, 2.82∓0.90 ml)(P<0.05).

CONCLUSION: Type 2 diabetic patients have a decreased volume of the cortical and subcortical reward circuitry, and insulin therapy can reverse such changes and improve the damage of reward circuitry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app