Add like
Add dislike
Add to saved papers

Liraglutide suppresses the plasma levels of active and des-acyl ghrelin independently of active glucagon-like Peptide-1 levels in mice.

Glucagon-like peptide-1 (GLP-1), an insulinotropic gastrointestinal peptide that is primarily produced by intestinal endocrine L-cells, stimulates satiety. Ghrelin, a hormone that is produced predominantly by the stomach stimulates hunger. There are two forms of ghrelin: active ghrelin and inactive des-acyl ghrelin. After depriving mice of food for 24 h, we demonstrated that the systemic administration of liraglutide (100  μ g/kg), a human GLP-1 analog that binds to the GLP-1 receptor, increased (1.4-fold) the plasma levels of active GLP-1 and suppressed the plasma levels of active and des-acyl ghrelin after 1 h. Despite the elevated plasma levels of active GLP-1 (11-fold), liraglutide had no effect on the plasma levels of active or des-acyl ghrelin after 12 h. These findings demonstrated that liraglutide suppresses the plasma levels of active and des-acyl ghrelin independently of active GLP-1 levels in fasted mice, suggesting a novel in vivo biological effect of liraglutide beyond regulating plasma GLP-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app