GSK3β is a checkpoint for TNF-α-mediated impaired osteogenic differentiation of mesenchymal stem cells in inflammatory microenvironments

Xiangwei Kong, Yan Liu, Ruidong Ye, Bin Zhu, Yuan Zhu, Xianghui Liu, Chenghu Hu, Hailang Luo, Yongjie Zhang, Yin Ding, Yan Jin
Biochimica et Biophysica Acta 2013, 1830 (11): 5119-29

BACKGROUND: The fate and differentiation of mesenchymal stem cells (MSCs) depend on various microenvironmental cues. In chronic inflammatory bone disease, bone regeneration is inhibited. The present study therefore sought to identify the underlying molecule mechanisms.

METHODS: We isolated periodontal ligament stem cells (PDLSCs), a new population of MSCs, from the periodontal ligament tissues of periodontitis patients and healthy controls (p-PDLSCs and h-PDLSCs). The secretion of inflammatory cytokines, like TNF-α, IL-1β, IL-6 and IL-8, after LPS stimulation was measured by ELISA. The expressions of p-GSK3β and GSK3β in two types of PDLSCs were detected by Western blot. TOPFlash was used to assay the Tcf/Lef transcriptional activity. Knockdown of GSK3β by siRNA and over-expression of GSK3β by adenoviruses were performed to confirm the role of GSK3β in the impaired osteogenic differentiation of PDLSCs under inflammatory microenvironment.

RESULTS: We demonstrated that p-PDLSCs displayed impaired osteogenic capacity than h-PDLSCs. Upon inflammatory stimulation, monocytes, but not PDLSCs, released inflammatory cytokines among which TNF-α directly act on PDLSCs and suppressed their osteogenic differentiation. TNF-α induced the phosphorylation of GSK3β, the deactivated form of GSK3β, which increased nuclear β-catenin and Lef-1 accumulation, and eventually reduced the Runx2-associated osteogenesis in PDLSCs. Over-expression of GSK3β rescued osteogenesis in TNF-α-stimulated PDLSCs, whereas inactivation of GSK3β was sufficient to liberate the β-catenin/Lef-1/Runx2 pathway.

CONCLUSION: GSK3β plays an obligatory role in the TNF-α-mediated inhibition of osteogenesis in MSCs.

GENERAL SIGNIFICANCE: The strategy to target GSK3β may provide a potential approach to bone regeneration in inflammatory microenvironments.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"