Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Photoselective DNA hairpin spin switches.

DNA hairpins having both a tethered anthraquinone (Aq) end-capping group and a perylenediimide (PDI) base surrogate were synthesized, wherein Aq and PDI are each separated from a G-C base pair hole trap by A-T and I-C base pairs (G = guanine, A = adenine, T= thymine, C = cytosine, I = inosine). Selective photoexcitation of PDI at 532 nm generates a singlet radical ion pair (RP), (1)(G(+•)-PDI(-•)), while selective photoexcitation of Aq at 355 nm generates the corresponding triplet RP, (3)(G(+•)-Aq(-•)). Subsequent radical pair intersystem crossing within these spin-correlated RPs leads to mixed spin states that exhibit spin-polarized, time-resolved EPR spectra in which the singlet- and triplet-initiated RPs have opposite phases. These results demonstrate that a carefully designed DNA hairpin can serve as a photodriven molecular spin switch based on wavelength-selective formation of the singlet or triplet RP without significant competition from undesired energy transfer processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app