Add like
Add dislike
Add to saved papers

Mouse models and techniques for the isolation of the diabetic endothelium.

Understanding the molecular mechanisms underlying diabetic endothelial dysfunction is necessary in order to improve the cardiovascular health of diabetic patients. Previously, we described an in vivo, murine model of insulin resistance induced by feeding a high-fat diet (HFD) whereby the endothelium may be isolated by fluorescence-activated cell sorting (FACS) based on Tie2-GFP expression and cell-surface staining. Here, we apply this model to two new strains of mice, ScN/Tie2-GFP and ApoE(-/-)/Tie2-GFP, and describe their metabolic responses and endothelial isolation. ScN/Tie2-GFP mice, which lack a functional toll-like receptor 4 (TLR4), display lower fasting glucose and insulin levels and improved glucose tolerance compared to Tie2-GFP mice, suggesting that TLR4 deficiency decreases susceptibility to the development of insulin resistance. ApoE(-/-)/Tie2-GFP mice display elevated glucose and cholesterol levels versus Tie2-GFP mice. Endothelial isolation by FACS achieves a pure population of endothelial cells that retain GFP fluorescence and endothelial functions. Transcriptional analysis of the aortic and muscle endothelium isolated from ApoE(-/-)/Tie2-GFP mice reveals a reduced endothelial response to HFD compared to Tie2-GFP mice, perhaps resulting from preexisting endothelial dysfunction in the hypercholesterolemic state. These mouse models and endothelial isolation techniques are valuable for assessing diabetic endothelial dysfunction and vascular responses in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app