Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Polyethersulfone solid-phase microextraction followed by liquid chromatography quadrupole time-of-flight mass spectrometry for benzotriazoles determination in water samples.

A microextraction method for the determination of 1H-benzotriazole (BTri), and four polar derivatives (4 and 5-methyl-1H-benzotriazole, 4-TTri and 5-TTri; 5,6-dimethyl-1H-benzotriazole, XTri; and 5-chloro-1H-benzotriazole, 5-ClBTri), in surface and wastewater samples is presented. Analytes were pre-concentrated using a disposable, low cost polyethersulfone (PES) sorbent and further analysed by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Parameters affecting the efficiency of sample preparation (extraction conditions and desorption solvent) and those controlling the performance of LC-MS determination were investigated. Analytes were extracted from 15mL water samples, containing a 30% (w/v) of sodium chloride (4.5g) and adjusted at pH 4.5, using a tubular PES sorbent (5cm length×0.7mm o.d., sorbent volume 42μL). After methanol desorption and solvent exchange, benzotriazoles were determined by LC-MS, with chromatograms extracted using a mass window of 20ppm, centred in their [M+H](+) ions. The identity of chromatographic peaks was confirmed with accurate ion product scan (MS/MS) spectra. The method provided limits of quantification (LOQs) between 0.005 and 0.100μgL(-1), and relative recoveries from 81% to 124% (except for XTri in sewage samples, ca. 60%) with associated standard deviations between 2% and 9%. When compared with polydimethylsiloxane covered stir-bars (coating volume 24μL), the PES polymer achieved significant higher responses (5-20-fold) for these polar pollutants. BTri and tolyltriazoles (4-TTri and 5-TTri) were found in urban sewage and river water samples, affected by wastewater discharges, with the maximum concentration (5.9μgL(-1)) corresponding to BTri in raw wastewater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app