Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Quantitative analyses of the composition and abundance of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in eight full-scale biological wastewater treatment plants.

This study investigated the diversity and abundance of AOA and AOB amoA genes in eight full-scale wastewater treatment plants (WWTPs). Although the process principles and system operations of the eight WWTPs were different, quantitative real-time PCR measurements showed that AOB amoA genes outnumbered AOA amoA genes with the ratio varying from 2.56 to 2.41×10(3), and ammonia may be partially oxidized by AOA. Phylogenetic analyses based on cloning and sequencing showed that Nitrososphaera cluster was the most dominant AOA species and might be distributed worldwide, and Nitrosopumilis cluster was few. Statistical analysis indicated that there might be versatile AOA ecotypes and some AOA might be not obligate autotrophic. The Nitrosomonas europaea cluster and Nitrosomonas oligotropha cluster were the two most dominant AOB species, and AOB species showed higher diversity than AOA species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app