Add like
Add dislike
Add to saved papers

Cavitation during tensile deformation of isothermally crystallized polypropylene and high-density polyethylene.

The cavitation phenomenon was studied in isothermally and non-isothermally crystallized polypropylene and high-density polyethylene. It was found that nano-voids were not present in the crystallized samples, but were formed during their tensile deformation. The process of cavitation was initiated before reaching the yield point. The ellipsoidal voids were initially elongated perpendicularly to the deformation direction, but if the polymer (i.e., high-density polyethylene) was able to deform beyond the yield, then the reorientation of voids into the deformation direction was observed at local strains of 100-200 %. This behavior was similar to that observed previously in the samples crystallized without an exact control of solidification conditions. The calculations of Guinier's radius showed that voids in deformed polypropylene samples were characterized by the gyration radii of 28-50 nm. Smaller voids were observed in polyethylene. The scale of cavitation during deformation, studied on the example of polyethylene, depended on the preceding crystallization process and was most intensive for the specimens crystallized at the highest temperature of 125 °C.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app