Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Hypoxia-inducible factor prolyl-hydroxylase-2 mediates transforming growth factor beta 1-induced epithelial-mesenchymal transition in renal tubular cells.

Transforming growth factor beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in kidney epithelial cells plays a key role in renal tubulointerstitial fibrosis in chronic kidney diseases. As hypoxia-inducible factor (HIF)-1α is found to mediate TGF-β1-induced signaling pathway, we tested the hypothesis that HIF-1α and its upstream regulator prolyl hydroxylase domain-containing proteins (PHDs) are involved in TGF-β1-induced EMT using cultured renal tubular cells. Our results showed that TGF-β1 stimulated EMT in renal tubular cells as indicated by the significant decrease in epithelial marker P-cadherin, and the increase in mesenchymal markers α-smooth muscle actin (α-SMA) and fibroblast-specific protein 1 (FSP-1). Meanwhile, we found that TGF-β1 time-dependently increased HIF-1α and that HIF-1α siRNA significantly inhibited TGF-β1-induced EMT, suggesting that HIF-1α mediated TGF-β1 induced-EMT. Real-time PCR showed that PHD1 and PHD2, rather than PHD3, could be detected, with PHD2 as the predominant form of PHDs (PHD1:PHD2=0.21:1.0). Importantly, PHD2 mRNA and protein, but not PHD1, were decreased by TGF-β1. Furthermore, over-expression of PHD2 transgene almost fully prevented TGF-β1-induced HIF-1α accumulation and EMT marker changes, indicating that PHD2 is involved in TGF-β1-induced EMT. Finally, Smad2/3 inhibitor SB431542 prevented TGF-β1-induced PHD2 decrease, suggesting that Smad2/3 may mediate TGF-β1-induced EMT through PHD2/HIF-1α pathway. It is concluded that TGF-β1 decreased PHD2 expression via an Smad-dependent signaling pathway, thereby leading to HIF-1α accumulation and then EMT in renal tubular cells. The present study suggests that PHD2/HIF-1α is a novel signaling pathway mediating the fibrogenic effect of TGF-β1, and may be a new therapeutic target in chronic kidney diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app