JOURNAL ARTICLE

Unusual 5f magnetism in the U2Fe3Ge ternary Laves phase: a single crystal study

M S Henriques, D I Gorbunov, J C Waerenborgh, L Havela, A B Shick, M Diviš, A V Andreev, A P Gonçalves
Journal of Physics. Condensed Matter: An Institute of Physics Journal 2013 February 13, 25 (6): 066010
23315489
Magnetic properties of the intermetallic compound U(2)Fe(3)Ge were studied on a single crystal. The compound crystallizes in the hexagonal Mg(2)Cu(3)Si structure, an ordered variant of the MgZn(2) Laves structure (C14). U(2)Fe(3)Ge displays ferromagnetic order below the Curie temperature T(C) = 55 K and presents an exception to the Hill rule, as the nearest inter-uranium distances do not exceed 3.2 Å. Magnetic moments lie in the basal plane of the hexagonal lattice, with the spontaneous magnetic moment M(s) = 1.0 μ(B)/f.u. at T = 2 K. No anisotropy within the basal plane is detected. In contrast to typical U-based intermetallics, U(2)Fe(3)Ge exhibits very low magnetic anisotropy, whose field does not exceed 10 T. The dominance of U in the magnetism of U(2)Fe(3)Ge is suggested by the (57)Fe Mössbauer spectroscopy study, which indicates very low or even zero Fe moments. Electronic structure calculations are in agreement with the observed easy-plane anisotropy but fail to explain the lack of an Fe contribution to the magnetism of U(2)Fe(3)Ge.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
23315489
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"