Add like
Add dislike
Add to saved papers

Two-dimensional electronic spectroscopy of bacteriochlorophyll a in solution: Elucidating the coherence dynamics of the Fenna-Matthews-Olson complex using its chromophore as a control.

Journal of Chemical Physics 2012 September 29
Following the observation of long-lived coherences in the two-dimensional (2D) electronic spectra of the Fenna-Matthews-Olson (FMO) complex, many theoretical works suggest that coherences between excitons may play a role in the efficient energy transfer that occurs in photosynthetic antennae. This interpretation of the dynamics depends on the assignment of quantum beating signals to superpositions of excitons, which is complicated by the possibility of observing both electronic and vibrational coherences in 2D spectra. Here, we explore 2D spectra of bacteriochlorophyll a (BChla) in solution in an attempt to isolate vibrational beating signals in the absence of excitonic signals to identify the origin of the quantum beats in 2D spectra of FMO. Even at high laser power, our BChla spectra show strong beating only from the nonresonant response of the solvent. The beating signals that we can conclusively assign to vibrational modes of BChla are only slightly above the noise and at higher frequencies than those previously observed in spectra of FMO. Our results suggest that the beating observed in spectra of FMO is of a radically different character than the signals observed here and can therefore be attributed to electronic coherences or intermolecular degrees of freedom.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app