Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Carbon and nitrogen isotope effects associated with the dioxygenation of aniline and diphenylamine.

Dioxygenation of aromatic rings is frequently the initial step of biodegradation of organic subsurface pollutants. This process can be tracked by compound-specific isotope analysis to assess the extent of contaminant transformation, but the corresponding isotope effects, especially for dioxygenation of N-substituted, aromatic contaminants, are not well understood. We investigated the C and N isotope fractionation associated with the biodegradation of aniline and diphenylamine using pure cultures of Burkholderia sp. strain JS667, which can biodegrade both compounds, each by a distinct dioxygenase enzyme. For diphenylamine, the C and N isotope enrichment was normal with ε(C)- and ε(N)-values of -0.6 ± 0.1‰ and -1.0 ± 0.1‰, respectively. In contrast, N isotopes of aniline were subject to substantial inverse fractionation (ε(N) of +13 ± 0.5‰), whereas the ε(C)-value was identical to that of diphenylamine. A comparison of the apparent kinetic isotope effects for aniline and diphenylamine dioxygenation with those from abiotic oxidation by manganese oxide (MnO(2)) suggest that the oxidation of a diarylamine system leads to distinct C-N bonding changes compared to aniline regardless of reaction mechanism and oxidant involved. Combined evaluation of the C and N isotope signatures of the contaminants reveals characteristic Δδ(15)N/Δδ(13)C-trends for the identification of diphenylamine and aniline oxidation in contaminated subsurfaces and for the distinction of aniline oxidation from its formation by microbial and/or abiotic reduction of nitrobenzene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app