Kinetics and mechanism of electrochemical oxygen reduction using platinum/clay/Nafion catalyst layer for polymer electrolyte membrane fuel cells

B Narayanamoorthy, K K R Datta, S Balaji
Journal of Colloid and Interface Science 2012 December 1, 387 (1): 213-20
This work demonstrates the use of amino functionalized Mg-phyllosilicate clay/Nafion nanocomposite film embedded with Pt nanoparticles (Pt/AC/N) for catalyzing oxygen reduction reaction (ORR) in sulphuric acid medium. Pt/AC/N nanocomposite films were surface characterized using transmission electron microscope. Cyclic and linear scan voltammetry studies were carried out under hydrodynamic conditions taking rotating-ring disc electrode (RRDE) as the working electrode. The effects of clay content, Pt mass loading, electrode rotation rate, and temperature on the ORR kinetics were studied. The Tafel slopes were found to vary between 118 and 126 mV dec(-1) indicating a good ORR kinetics. The exchange current density values calculated after mass transfer correction ranged from 5.8×10(-7) to 2.4×10(-6) A cm(-2). From the RRDE disc currents, Koutecky-Levich plots were constructed and the ORR mechanism was found to follow a four electron path with minimum H(2)O(2) formation of ∼1.6%. The effect of temperature on ORR kinetics was found at 25, 40, and 50°C. The energy of activation calculated to be 7.68 kJ mol(-1) and comparable to the standard Pt/C catalyzed ORR systems.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"