Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Bone formation around zirconia implants combined with rhBMP-2 gel in the canine mandible.

OBJECTIVE: The aim of this study was to estimate the effects of zirconia implants and recombinant human bone morphogenetic protein-2 (rhBMP-2) gel on the acceleration of local bone formation and osseointegration in the canine mandible.

MATERIALS AND METHODS: Four groups of 48 implants with identical geometry were installed in the mandibles of beagle dogs: alumina-blasted zirconia implants applied with rhBMP-2, alumina-blasted zirconia implants applied with demineralized bone matrix (DBM), alumina-blasted zirconia implants, and resorbable blast media-treated titanium (Ti) implants. For the first two groups, zirconia implants were inserted after the surgical sites were filled with rhBMP-2 or DBM gel. For the other two groups, zirconia or Ti implants were installed with no adjunctive treatment. Fluorescent bone markers were administered to monitor bone remodeling at weeks 2, 4, and 5 postimplantation. After healing periods of 3 weeks and 6 weeks, the animals were sacrificed, and fluorescent microscopy, histology, and histomorphometric analyses were performed.

RESULTS: Fluorescent microscopy showed that bone formation around the zirconia implants installed with rhBMP-2 gel was the most prominent at 2 weeks postimplantation, while the Ti implants acquired bone apposition mainly at week 5. No significant differences were found in bone area among the groups (P > 0.05). The zirconia implants showed similar bone-to-implant contact to the Ti implants. There were no significant differences in bone-to-implant contact between the zirconia implants with rhBMP-2 gel and those with DBM (P > 0.05).

CONCLUSIONS: The zirconia implants with alumina-blasted surfaces may achieve osseointegration in much the same manner as the well-established Ti implants. The area influenced by rhBMP-2 gel, including the alveolar crest, may cause active remodeling and early bone formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app