Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

External urethral sphincter motor unit recruitment patterns during micturition in the spinally intact and transected adult rat.

In the rat, external urethral sphincter (EUS) activation during micturition consists of three sequential phases: 1) an increase in tonic EUS activity during passive filling and active contraction of the bladder (guarding reflex), 2) synchronized phasic activity (EUS bursting) associated with voiding, and 3) sustained tonic EUS activity that persists after bladder contraction. These phases are perturbed following spinal cord injury. The purpose of the present study was to characterize individual EUS motor unit (MU) patterns during micturition in the spinally intact and transected adult rat. EUS MU activity was recorded from either the L5 or L6 ventral root (intact) or EUS muscle (transected) during continuous flow cystometry in urethane-anesthetized adult female Sprague-Dawley rats. With the use of bladder pressure threshold and timing of activation, four distinct patterns of EUS MU activity were identified in the intact rat: low threshold sustained, medium/high threshold sustained, medium/high threshold not sustained, and burst only. In general, these MUs displayed little frequency modulation during active contraction, generated high-frequency bursts of action potentials during EUS bursting, and varied in terms of the duration of sustained tonic activity. In contrast, three general patterns of EUS MU activity were identified in the transected rat: low threshold, medium threshold, and high threshold. These MUs exhibited considerable frequency modulation during active contraction of the bladder, no bursting behavior and little to no sustained firing. The prominent frequency modulation of EUS MUs is likely due to the enhanced guarding reflex seen in EUS whole muscle electromyogram recordings in transected rats (D'Amico SC, Schuster IP, Collins WF 3rd. Exp Neurol 228: 59-68, 2011). In addition, EUS MU recruitment in transected rats more closely followed predictions by the size principle than in intact rats. This may reflect the influence of local synaptic circuits or intrinsic properties of EUS motoneurons that are active in intact rats but attenuated or absent in transected rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app