Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Increases in .VO2max with "live high-train low" altitude training: role of ventilatory acclimatization.

The purpose of this study was to estimate the percentage of the increase in whole body maximal oxygen consumption (.VO(2max)) that is accounted for by increased respiratory muscle oxygen uptake after altitude training. Six elite male distance runners (.VO(2max) = 70.6 ± 4.5 ml kg(-1) min(-1)) and one elite female distance runner (.VO(2max)) = 64.7 ml kg(-1) min(-1)) completed a 28-day "live high-train low" training intervention (living elevation, 2,150 m). Before and after altitude training, subjects ran at three submaximal speeds, and during a separate session, performed a graded exercise test to exhaustion. A regression equation derived from published data was used to estimate respiratory muscle .VO(2) (.VO(2RM)) using our ventilation (.VE) values. .VO(2RM) was also estimated retrospectively from a larger group of distance runners (n = 22). .VO(2max) significantly (p < 0.05) increased from pre- to post-altitude (196 ± 59 ml min(-1)), while (.VE) at .VO(2max) also significantly (p < 0.05) increased (13.3 ± 5.3 l min(-1)). The estimated .VO(2RM) contributed 37 % of Δ .VO(2max). The retrospective group also saw a significant increase in .VO(2max) from pre- to post-altitude (201 ± 36 ml min(-1)), along with a 10.8 ± 2.1 l min(-1) increase in (.VE), thus requiring an estimated 27 % of Δ .VO(2max) Our data suggest that a substantial portion of the improvement in .VO(2max) with chronic altitude training goes to fuel the respiratory muscles as opposed to the musculature which directly contributes to locomotion. Consequently, the time-course of decay in ventilatory acclimatization following return to sea-level may have an impact on competitive performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app