Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

DFT study of glucose based glycolipid crown ethers and their complexes with alkali metal cations Na(+) and K(+).

A theoretical study of a series of five glucose based glycolipid crown ethers and their complexes with Na(+) and K(+) was performed using the density functional theory with B3LYP/6-31 G* to obtain the optimized geometrical structures and electronic properties. The local nucleophilicity of the five molecules was investigated using Fukui function, while the global nucleophilicity was calculated from the ionization potential and electron affinity. The structures and coordination of the complexes were studied to identify the best match of the glycolipid crown ethers with cations. In general, it was found that the oxygen atoms pairs O2 and O3 (or O4 and O6) on the sugar ring are constrained from moving toward the cation, which results in a weaker O-cation coordination strength for the oxygen pair compared to the other oxygen atoms in the crown ether ring. The thermodynamic properties of the binding of the complexes and the exchange reaction in gas phase were evaluated. The cation selectivity pattern among the five molecules was in good agreement with the experiment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app