Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Metformin impairs the growth of liver kinase B1-intact cervical cancer cells.

OBJECTIVE: Metformin is one of the most widely used drugs for the treatment of type 2 diabetes. Recent investigations demonstrated that application of metformin reduces cancer risk. The present study aimed to determine the role of liver kinase B1 (LKB1) in the response of cervical cancer cells to metformin.

METHODS: LKB1 expression and the integrity of LKB1-AMPK signaling were determined with immunoblot in 6 cervical cancer cell lines. Cellular sensitivity to metformin was analyzed with MTT assay.

RESULTS: Metformin inhibited growth of cervical cancer cells, C33A, Me180, and CaSki, but was less effective against HeLa, HT-3, and MS751 cells. Analyzing the expression status and the integrity of LKB1-AMPK-mTOR signaling, we found that cervical cancer cells sensitive to metformin were LKB1 intact and exerted an integral AMPK-mTOR signaling response after the treatment. Ectopic expression of LKB1 with stable transduction system or inducible expression construct in endogenous LKB1 deficient cells improved the activation of AMPK, promoted the inhibition of mTOR, and prompted the sensitivity of cells to metformin. In contrast, knock-down of LKB1 compromised cellular response to metformin. Our further investigation demonstrated that metformin could induce both apoptosis and autophagy in cervical cancer cells when LKB1 is expressed.

CONCLUSIONS: Metformin is a potential drug for the treatment of cervical cancers, in particular to those with intact LKB1 expression. Administration of cell metabolism agonists may enhance LKB1 tumor suppression, inhibit cell growth, and reduce tumor cell viability via the activation of LKB1-AMPK signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app