Add like
Add dislike
Add to saved papers

Unexpected acidity enhancement triggered by AlH3 association to phosphines.

The complexes formed by the interaction between a series of phosphines R-PH(2) (R = H, CH(3), c-C(3)H(5), C(6)H(5)) and AlH(3) have been investigated through the use of high-level G4 ab initio calculations. These very stable complexes behave as much stronger acids than the isolated phosphines. This dramatic acidity enhancement, which can be as high as 174 kJ mol(-1), results from a much greater stabilization of the anionic deprotonated species with respect to the neutral one, upon AlH(3) association. This effect depends quantitatively on the nature of the substituent R and is smaller for R = C(6)H(5) because of the conjugation of the P lone pair with the aromatic system. More unexpectedly, however, the phosphine-alane complexes, RPH(2):AlH(3), are more acidic than the corresponding phosphine-borane RPH(2):BH(3) analogues. This unexpected result is due to the enhanced stability of the anionic deprotonated species for complexes involving AlH(3), because the delocalization of the newly created P lone pair with the P-Al bonding density is more favorable when the Lewis acid is aluminum trihydride than when it is borane.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app