Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Long-term actions of BDNF on inhibitory synaptic transmission in identified neurons of the rat substantia gelatinosa.

Peripheral nerve injury promotes the release of brain-derived neurotrophic factor (BDNF) from spinal microglial cells and primary afferent terminals. This induces an increase in dorsal horn excitability that contributes to "central sensitization" and to the onset of neuropathic pain. Although it is accepted that impairment of GABAergic and/or glycinergic inhibition contributes to this process, certain lines of evidence suggest that GABA release in the dorsal horn may increase after nerve injury. To resolve these contradictory findings, we exposed rat spinal cord neurons in defined-medium organotypic culture to 200 ng/ml BDNF for 6 days to mimic the change in spinal BDNF levels that accompanies peripheral nerve injury. Morphological and electrophysiological criteria and glutamic acid decarboxylase (GAD) immunohistochemistry were used to distinguish putative inhibitory tonic-islet-central neurons from putative excitatory delay-radial neurons. Whole cell recording in the presence of 1 μM tetrodotoxin showed that BDNF increased the amplitude of GABAergic and glycinergic miniature inhibitory postsynaptic currents (mIPSCs) in both cell types. It also increased the amplitude and frequency of spontaneous, action potential-dependent IPSCs (sIPSCs) in putative excitatory neurons. By contrast, BDNF reduced sIPSC amplitude in inhibitory neurons but frequency was unchanged. This increase in inhibitory drive to excitatory neurons and decreased inhibitory drive to inhibitory neurons seems inconsistent with the observation that BDNF increases overall dorsal horn excitability. One of several explanations for this discrepancy is that the action of BDNF in the substantia gelatinosa is dominated by previously documented increases in excitatory synaptic transmission rather than by impediment of inhibitory transmission.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app